4.1: Exponential Functions

An exponential function is of the form $f(x) = a \cdot b^x$, where

- *a* is a non-zero real number called the **initial** value and *b* is any positive real number such that *b* ≠ 1.
- The domain of *f* is all real numbers.
- The range of f is all positive real numbers if a > 0.
- The range of f is all negative real numbers if a < 0.
- The *y*-intercept is (0, a), and the horizontal asymptote is y = 0. The graph has NO *x*-intercept.
- If b > 1, then the function is an exponential growth. That is, if a > 0, as $x \to \infty y \to \infty$.
- If 0 < b < 1, then the function is an exponential decay, That is, as $x \to \infty$, $y \to 0$.
- A few graphs:

Compound Interest

• $A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$

A(t) = Amount after *t* years.

P = Principal

r = Annual Percentage Rate (APR)

n = Number of compounding period per year

t = Number of years $\frac{r}{n} =$ Interest rate per period nt = Total number of compounding periods

Annual Percentage Yield

• The **annual percentage yield (APY)** of an investment account is a representation of the actual annual interest rate earned on a compounding account. It is based on a compounding period of one year.

$$APY = \left(1 + \frac{r}{n}\right)^n - 1$$

Euler Number e

• The letter *e* represents the irrational number $\left(1 + \frac{1}{n}\right)^n \rightarrow e$ as *n* increases without bound.

 $e \approx 2.718282$ and is the natural base for many real-world exponential models.

Continuous Growth

• We typically use the natural base *e* for continuous growth. $A(t) = ae^{rt}$.

A(t) = Amount after time t .	r = Rate of continuous growth	
a = Initial value	t = Time elapsed	

Continuous Compounding

• $A(t) = Pe^{rt}$

A(t) = Amount after t years. P = Principal r = Annual Percentage Rate (APR) t = Number of years 1. Identify the exponential functions.

(A)
$$f(x) = x^{100} + 5x^{50}$$

(B) $g(x) = 3(5^{-x})$
(C) $i(t) = 0.5(2^{2t-1})$
(E) $j(x) = 0.2^{2x}$

(C)
$$h(y) = 3e^{y-2}$$
 (F) $k(t) = t(t-1)$

2. Evaluate each function at the value given.

(A)
$$f(x) = e^{-x}$$
 at $x = 2$ (C) $h(y) = 5(0.5)^{y}$ at $y = -1$

(B) $g(t) = 2^t$ at $t = \pi$ (D) $i(x) = 9^{-x}$ at x = 0.5

3. Chen wants to invest \$3000 at the rate of 6% per year. Help Chen decide; find the amount in the account after 5 years if interest is compounded **(a)** annually, **(b)** semi-annually and **(c)** daily. (Round to nearest dollar.)

- 4. If \$2000 is invested at an interest rate of 3.5% per year, compounded continuously, find the future value of the investment after the given number of years:
 - (A) 2 years.
 - (B) 4 years

- 5. A radioactive substance decays in such a way that the amount of mass remaining after *t* days is given by the function $m(t) = 13e^{-.015t}$, where m(t) is measured in milligrams.
 - (A) Find the mass at time t = 0.
 - (B) How much of the mass remains after 20 days.

6. A few value of an exponential function $f(x) = ab^x$ is given in the table to the right.

Х	f(x)
2	12
3	24
4	48
5	96

- (A) What is $\frac{f(3)}{f(2)}$?
- (B) What is $\frac{f(4)}{f(3)}$?
- (C) What is the value of *b*?
- (D) What is the value of *a*?
- (E) Rewrite f(x) using the values in Parts (C) and (D).