4.1: Exponential Functions

An exponential function is of the form $f(x)=a \cdot b^{x}$, where

- a is a non-zero real number called the initial value and b is any positive real number such that $b \neq 1$.
- The domain of f is all real numbers.
- The range of f is all positive real numbers if $a>0$.
- The range of f is all negative real numbers if $a<0$.
- The y-intercept is $(0, a)$, and the horizontal asymptote is $y=0$. The graph has NO x-intercept.
- If $b>1$, then the function is an exponential growth. That is, if $a>0$, as $x \rightarrow \infty y \rightarrow \infty$.
- If $0<b<1$, then the function is an exponential decay, That is, as $x \rightarrow \infty, y \rightarrow 0$.
- A few graphs:

Compound Interest

- $A(t)=P\left(1+\frac{r}{n}\right)^{n t}$
$A(t)=$ Amount after t years.
$P=$ Principal $r=$ Annual Percentage Rate (APR)
$n=$ Number of compounding period per year
$t=$ Number of years
$\frac{r}{n}=$ Interest rate per period
$n t=$ Total number of compounding periods

Annual Percentage Yield

- The annual percentage yield (APY) of an investment account is a representation of the actual annual interest rate earned on a compounding account. It is based on a compounding period of one year.

$$
\mathrm{APY}=\left(1+\frac{r}{n}\right)^{n}-1
$$

Euler Number e

- The letter e represents the irrational number $\left(1+\frac{1}{n}\right)^{n} \rightarrow e$ as n increases without bound. $e \approx 2.718282$ and is the natural base for many real-world exponential models.

Continuous Growth

- We typically use the natural base e for continuous growth. $A(t)=a e^{r t}$.

$$
\begin{array}{ll}
A(t)=\text { Amount after time } t . & r=\text { Rate of continuous growth } \\
a=\text { Initial value } & t=\text { Time elapsed }
\end{array}
$$

Continuous Compounding

- $A(t)=P e^{r t}$
$A(t)=$ Amount after t years.
$P=$ Principal
$r=$ Annual Percentage Rate (APR)
$t=$ Number of years

1. Identify the exponential functions.
(A) $f(x)=x^{100}+5 x^{50}$
(D) $i(t)=0.5\left(2^{2 t-1}\right)$
(B) $g(x)=3\left(5^{-x}\right)$
(E) $j(x)=0.2^{2 x}$
(C) $h(y)=3 e^{y-2}$
(F) $k(t)=t(t-1)$
2. Evaluate each function at the value given.
(A) $f(x)=e^{-x}$ at $x=2$
(C) $h(y)=5(0.5)^{y}$ at $y=-1$
(B) $g(t)=2^{t}$ at $t=\pi$
(D) $i(x)=9^{-x}$ at $x=0.5$
3. Chen wants to invest $\$ 3000$ at the rate of 6% per year. Help Chen decide; find the amount in the account after 5 years if interest is compounded (a) annually, (b) semi-annually and (c) daily. (Round to nearest dollar.)
4. If $\$ 2000$ is invested at an interest rate of 3.5% per year, compounded continuously, find the future value of the investment after the given number of years:
(A) 2 years.
(B) 4 years
5. A radioactive substance decays in such a way that the amount of mass remaining after t days is given by the function $m(t)=13 e^{-.015 t}$, where $m(t)$ is measured in milligrams.
(A) Find the mass at time $t=0$.
(B) How much of the mass remains after 20 days.
6. A few value of an exponential function $f(x)=a b^{x}$ is given in the table to the right.

x	$\mathrm{f}(\mathrm{x})$
2	12
3	24
4	48
5	96

(A) What is $\frac{f(3)}{f(2)}$?
(B) What is $\frac{f(4)}{f(3)}$?
(C) What is the value of b ?
(D) What is the value of a ?
(E) Rewrite $f(x)$ using the values in Parts (C) and (D).

